

Daily Tutorial Sheet-2

JEE Advanced (Archive)

- 16. Let weight of $H_2C_2O_4 = a g$ in 1L and weight of $NaHC_2O_4 = b g$ in 1L for acid base reaction now (Meq. of $H_2C_2O_4 + Meq$. of $NaHC_2O_4$) in $10 \, mL = 3 \times 0.1$
 - $\therefore \qquad \text{Meq. of } \text{H}_2\text{SO}_4 + \text{ Meq. of } \text{NaHC}_2\text{O}_4 \text{ in } 1\text{L} = 3 \times 0.1 \times 100 = 30$

$$\frac{a}{45} \times 1000 + \frac{b}{112/1} \times 1000 = 30$$
 (i

For redox change:

$$C_2^{6+} \longrightarrow 2C^{4+} + 2e^{-}$$

$$Mn^{7+} + 5e^- \longrightarrow Mn^{2+}$$

Meq. of $H_2C_2O_4 + Meq$. of $NaHC_2O_4$ in $10 \, mL = 4 \times 0.1$

$$\therefore$$
 Meq. of $H_2C_2O_4 + Meq.$ of $NaHC_2O_4$ in $1L = 4 \times 0.1 \times 100 = 40$

(: Eq. wt. of
$$H_2C_2O_4 = \frac{M}{2}$$
 and Eq. wt. of $NaHC_2O_4 = \frac{M}{2}$ as reductant)

$$\therefore \frac{1000 \,\mathrm{a}}{45} + \frac{2000 \,\mathrm{b}}{112} = 40 \qquad \dots \dots \dots \text{ (ii)}$$

Solving, equations (i) and (ii), we get, a = 0.9g and b = 1.12g

17.(B) Normality of 10 volume $H_2O_2 = 1.78 \text{ N}$

Thus, volume strength of 1.78 N solution = 10

: Volume strength of 1.5 N
$$H_2O_2 = 1.5 \times \frac{10}{1.78} = \frac{15}{1.78} = 8.4$$

18.(C) 2 + 2(2 + x - 4) = 0 [: Ba(H₂PO₂)₂ is neutral molecule]

or
$$2x - 2 = 0$$

$$\Rightarrow$$
 $x = +1$

19. $Pb(NO_3)_2 \longrightarrow PbO + 2NO_2 \uparrow + \frac{1}{2}O_2 \uparrow$

$$\underset{\text{bg}}{\text{NaNO}_3} \longrightarrow \text{NaNO}_2 + \frac{1}{2} O_2 \uparrow$$

$$\therefore a+b=5g$$

The loss in weight for 5 g mixture = $5 \times \frac{28}{100} = 1.4 \text{ g}$

$$\therefore$$
 Residue left = 5-1.4 = 3.6 g

The residue contains PbO + NaNO₂

$$\therefore$$
 331 g Pb(NO₃)₂ gives = 223 g PbO

$$\therefore \qquad \text{a g Pb(NO}_3)_2 \text{ gives } = \frac{223 \times a}{332} \text{ g PbO}$$

Similarly,

$$\therefore$$
 85 g NaNO₃ gives = 69 g NaNO₃

$$\therefore$$
 b g NaNO₃ gives = $\frac{69 \times b}{85}$ g NaNO₂

$$\therefore \frac{223 \times a}{331} + \frac{69 \times b}{85} = 3.6$$
 (iii

Solving equation, (i) and (ii) a = 3.32g and b = 1.68g

- **20.** Let 'a' moles of Cu^{2+} and 'b' moles of $C_2O_4^{2-}$ be present in solution
 - (i) The solution is oxidised by $KMnO_4$ with only $C_2O_4^{2-}$

$$Mn^{7+} + 5e^{-} \longrightarrow Mn^{2+}$$

$$C_{2}^{6+} \longrightarrow 2C^{4+} + 2e^{-}$$

- \therefore Meq. of $C_2O_4^{2-}$ = Meq. of KMnO₄
- $b \times 2 \times 1000 = 0.02 \times 5 \times 22.6$
- $b = 1.13 \times 10^{-3}$
- (ii) After oxidation of $C_2O_4^{2-}$, the resulting solution is neutralized by Na_2CO_3 , acidified with dilute CH_3COOH and then treated with excess of KI. The liberated I_2 required $Na_2S_2O_3$ for its neutralization

i.e.
$$Cu^{2+} \xrightarrow{KI} I_2 \xrightarrow{Na_2S_2O_3} Na_2S_4O_6 + I^{-1}$$

- \therefore Meq. of Cu²⁺ = Meq. of I₂ liberated = Meq. of Na₂S₂O₃ used
- $\therefore \qquad \text{Meq. of } \text{Cu}^{2+} = \text{Meq. of } \text{Na}_2 \text{S}_2 \text{O}_3 \text{ used}$ $\text{a} \times 1 \times 1000 = 11.3 \times 0.5 \times 1$
- $a = 5.65 \times 10^{-3}$

Hence, molar ratio of Cu^{2+} ; $C_2O_4^{2-} = 5:1$

Involved reactions are : $2\,\text{MnO}_4^- + 5\,\text{C}_2\text{O}_4^{2-} + 16\,\text{H}^+ \longrightarrow 2\,\text{Mn}^{2+} + 10\,\text{CO}_2 + 8\,\text{H}_2\text{O}$

$$2 Cu^{2+} + 4I^{-} \longrightarrow Cu_{2}I_{2} + I_{2}$$

 $I_{2} + 2S_{2}O_{3}^{2-} \longrightarrow 2I^{-} + S_{4}O_{6}^{2-}$

21. The redox changes are :

For reduction of Fe₂O₃ by zinc dust

$$Fe_2^{6+} + 2e^- \longrightarrow 2Fe^{2+}$$

$$Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$$

 $oxidant + ne^- \longrightarrow reductant$

Meq. of Fe_2O_3 in 25 mL

= Meq. of Fe^{2+} formed = Meq. of oxidant used to oxidize Fe^{2+} again

 \therefore Meq. of Fe₂O₃ in 25 mL = Meq. of oxidant = $17 \times 0.0167 \times n$

Where n is the number of electrons gained by 1 molecule of oxidant

... Meq. of Fe₂O₃ in 100 mL =
$$17 \times 0.0167 \times n \times \frac{100}{25}$$

$$\therefore \frac{1 \times 55.2 \times 1000}{100 \times \frac{M}{2}} = 17 \times 0.0167 \times n \times 4$$

 \therefore Molecule wt. of Fe₂O₃ = 160

$$\therefore \qquad n = \frac{1 \times 55.2 \times 2 \times 1000}{100 \times 160 \times 17 \times 0.0167 \times 4} = 6$$

Hence, number of electrons gained by one molecule of oxidant = 6

22. Number of millimoles of KIO₃ in 30 mL of solution = molarity × volume in mL = $\frac{1}{10}$ × 30 = 3

Given reaction: $KIO_3 + 2KI + 6HCI \longrightarrow 3ICI + 3KCI + 3H_2O$

According to the equation given, 1 mole of KIO3 is equivalent to 2 moles of KI

- : Number of millimoles of KI in 20 mL of stock solution = $2 \times 3 = 6$
- ∴ Number of millimoles of KI in 50 mL of the same solution = $6 \times \frac{50}{20} = 15$

Number of millimoles of KIO_3 in 50 mL of solution $=\frac{1}{10} \times 50 = 5$

 \therefore Number of millimoles of KI used with AgNO₃ = 15 – 10 = 5

$$AgNO_3 + KI \longrightarrow AgI + KNO_3$$

1 mole of $AgNO_3$ reacts with 1 mole of KI. Therefore, number of millimoles of $AgNO_3$ is equal to 5

: Weight of AgNO₃ = $5 \times 10^{-3} \times 170 \,\text{g} = 0.85 \,\text{g}$

$$\therefore$$
 % of AgNO₃ = $\frac{0.85 \times 100}{1.0}$ = 85.0%

23.(A) Oxidation reaction : $C_2O_4^{2-} \rightarrow 2CO_2 + 2e^-] \times 5$

Reduction reaction: $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O] \times 2$

Net reaction : $2 \text{MnO}_4^- + 16 \text{H}^+ + 5 \text{C}_2 \text{O}_4^{2-} \rightarrow 2 \text{Mn}^{2+} + 10 \text{CO}_2 + 8 \text{H}_2 \text{O}$

24.(3) Be_nAl₂Si₆O₁₈

$$(2n) + (3 \times 2) + (4 \times 6) + (-2 \times 18) = 0$$
 or $2n + 30 - 36 = 0$ or $2n = 6$ or $n = 3$

25. As $YBa_2Cu_3O_7$ is neutral (+3) + 2(+2) + 3(x) + 7(-2) = 0,

or
$$3+4+3x-14=0$$

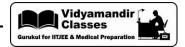
$$\Rightarrow$$
 3x+7-14 = 0 or x = $+\frac{7}{3}$

26. $H_2O_2 \longrightarrow H_2O + [O]$

$$\frac{2\,\mathrm{KI} + \mathrm{H}_2\mathrm{SO}_4 + [\mathrm{O}] \longrightarrow \mathrm{K}_2\mathrm{SO}_4 + \mathrm{H}_2\mathrm{O} + \mathrm{I}_2}{2\,\mathrm{KI} + \mathrm{H}_2\mathrm{SO}_4 + \mathrm{H}_2\mathrm{O}_2 \longrightarrow \mathrm{K}_2\mathrm{SO}_4 + 2\,\mathrm{H}_2\mathrm{O} + \mathrm{I}_2}$$

Liberated moles of
$$I_2 = \frac{0.508 \times 10^3}{254} = 2$$

Meq. of
$$I_2 = 2 \times 2 = 4$$


Meq. of liberated $I_2 = Meq.$ of used H_2O_2

Meq. of
$$H_2O_2 = 4$$

Weight of $H_2O_2 = \text{Meq.} \times \text{Eq.}$ wt. of $H_2O_2 \times 10^{-3} = 4 \times 17 \times 10^{-3} g = 0.068 g$

Strength of
$$H_2O_2 = \frac{0.068 \times 1000}{5} g/L = 13.6 g/L$$

- \therefore 60.7 g H₂O₂ is used for 20 volume H₂O₂
- \therefore 13.6 g/L strength of H₂O₂ is used for = $\frac{20 \times 13.6}{60.7}$ volume = 4.48 volume

27.
$$CO(g) + \frac{1}{2}O_2(g) \longrightarrow CO_2(g)$$

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(\ell)$$

'x' is the volume of CO and y is+ the volume of CH₄

Thus,
$$\frac{1}{2}x + y = 13$$
 (i)

$$x + y = 14$$
 (ii)

By solving eq. (i) & (ii), we get
$$x = 2cc$$
; $y = 12cc$

Thus,
$$\%$$
 CH₄ = 60, $\%$ CO = 10, $\%$ He = 30

28. The following reactions are involved in given data

$$Fe_2O_3 + 3H_2SO_4 \longrightarrow Fe_2(SO_4)_3 + 3H_2O, \quad FeO + H_2SO_4 \longrightarrow FeSO_4 + H_2O$$

$$Fe_2(SO_4)_3 + 2KI \longrightarrow 2FeSO_4 + K_2SO_4 + I_2$$

$$I_2 + 2 \operatorname{Na}_2 S_2 O_3 \longrightarrow 2 \operatorname{NaI} + \operatorname{Na}_2 S_4 O_6$$

$$2 \text{ KMnO}_4 + 8 \text{ H}_2 \text{SO}_4 + 10 \text{ FeSO}_4 \longrightarrow \text{K}_2 \text{SO}_4 + 2 \text{ MnSO}_4 + 5 \text{ Fe}_2 (\text{SO}_4)_3 + 8 \text{ H}_2 \text{O}_4$$

$$\therefore$$
 1 mole Fe₂O₃ = 1 mole Fe₂(SO₄)₃ = 1 mole of I₂ = 2 moles of Na₂S₂O₃

and 5 moles of
$$FeSO_4 = 1$$
 mole of $KMnO_4$

Number of millimoles of I₂ in
$$20 \text{ mL} = 5.5 \times \frac{1}{2} = 2.75$$

So, the number of millimoles of
$$I_2$$
 in $100 \,\text{mL} = 2.75 \times \frac{100}{20} = 13.75$

Number of millimoles of
$$Fe_2O_3 = 13.75$$

Number of moles of
$$Fe_2O_3 = 13.75 \times 10^{-3}$$

Suppose x moles of Fe_3O_4 and y moles of Fe_2O_3 are present in 3g sample. In this sample Fe_3O_4 is an equimolar mixture of FeO_3 and Fe_2O_3 . Therefore, total number of moles of Fe_2O_3 in the mixture = x + y

$$x + y = 13.75 \times 10^{-3}$$
 (i)

Number of millimoles of $KMnO_4 = 0.25 \times 12.80 = 3.2$

$$\therefore$$
 Number of millimoles of FeSO₄ in 50 mL = $3.2 \times 5 = 16$

and number of millimoles of
$$FeSO_4$$
 in $100 \, mL = 16 \times \frac{100}{50} = 32$

1 mole Fe₃SO₄ gives 3 moles of FeSO₄ and 1 mole of Fe₂O₃ gives 2 moles of FeSO₄

$$3x + 2y = 32 \times 10^{-3}$$
 (ii)

On solving equations (i) and (ii)

Number of moles of Fe_3O_4 in the mixture (x) = 4.5×10^{-3}


Number of moles of Fe_2O_3 in the mixture (y) = 9.25×10^{-3}

$$\therefore$$
 Mass of Fe₃O₄ = 4.5×10⁻³ × 232 = 1.044 g

and Mass of
$$Fe_2O_3 = 9.25 \times 10^{-3} \times 160 = 1.480 \text{ g}$$

$$\therefore$$
 % of Fe₃O₄ = $\frac{1.044}{3.00} \times 100 = 34.8\%$

and % of
$$Fe_2O_3 = \frac{1.480}{3.0} \times 100 = 49.33\%$$

29.
$$2 \text{ KI} + \text{H}_2 \text{SO}_4 + \text{H}_2 \text{O}_2 \longrightarrow \text{K}_2 \text{SO}_4 + 2 \text{H}_2 \text{O} + \text{I}_2$$

$$2 \operatorname{Na}_2 \operatorname{S}_2 \operatorname{O}_3 + \operatorname{I}_2 \longrightarrow \operatorname{Na}_2 \operatorname{S}_4 \operatorname{O}_6 + 2 \operatorname{NaI}$$

Meq. of
$$Na_2S_2O_3 = 20 \times 0.3 = 6$$
 (Normality × volume)

Meq. of
$$Na_2S_2O_3 = Meq.$$
 of $I_2 = 6$

Meq. of
$$I_2$$
 = Meq. of H_2O_2 = 6

Weight of
$$H_2O_2 = Meq. \times E \times 10^{-3} = 6 \times 17 \times 10^{-3} = 0.102 g$$
 (: Eq. wt. of $H_2O_2 = \frac{34}{2} = 17$)

Strength of
$$H_2O_2 = \frac{0.102 \times 1000}{25} = 0.408 \,\text{g/L}$$

Molarity of
$$H_2O_2 = \frac{0.408 \,\text{g/L}}{\text{mol.wt.}(34)} = 0.012 \,\text{M}$$

$$\begin{array}{ccc} 2\,H_2O_2 & \longrightarrow & 2\,H_2O + & O_2 \\ 2\,\text{mole} & & & 1\,\text{mole} \\ 0.012\,\text{moles} & & & 0.06\,\text{moles} \end{array}$$

$$\therefore$$
 Volume of O₂ at STP = 0.06×22.4 L = 1.344 L

Hence the volume strength of $H_2O_2 = 1.344 L$

30.(A)
$$2 \text{ KMnO}_4 + 3 \text{ H}_2 \text{SO}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{ MnSO}_4 + 3 \text{ H}_2 \text{O} + 5 \text{[O]}$$

$$\frac{[SO_3^{2^-} + [O] \to SO_4^{2^-}] \times 5}{2 \text{ KMnO}_4 + 3 \text{ H}_2 \text{SO}_4 + 5 \text{ SO}_3^{2^-} \to \text{K}_2 \text{SO}_4 + 2 \text{ MnSO}_4 + 3 \text{ H}_2 \text{O} + 5 \text{ SO}_4^{2^-}}$$

or
$$2 \text{MnO}_4^- + 6 \text{H}^+ + 5 \text{SO}_3^{2-} \rightarrow 2 \text{Mn}^{2+} + 5 \text{SO}_4^{2-} + 3 \text{H}_2 \text{O}$$

Therefore, 5 moles of SO_3^{2-} will require 2 moles of MnO_4^-

1 mole of
$$SO_3^{2-}$$
 will require $\frac{2}{5}$ moles of MnO_4^-